ISI Papers

ISI Papers (NanoFATE Articles)

Spotlight paper

PDF icon Dumont et al. (accepted). Nano silver and nano zinc-oxide in surface waters - Exposure estimation for Europe at high spatial and temporal resolution. Environmental Pollution.

Main Finding: Ten percent of European river stretches have expected concentrations exceeding 0.18 ng L-1 nano silver and 150 ng L-1nano zinc-oxide.


Each of the following links will open a summary of a NanoFATE publication in a peer-reviewed journal. The publications have been classified according to the NanoFATE project components.

Contact details are included in each summary.

Component 1 - Particle Chemistry & Fate

PDF icon Tuoriniemi, J., Cornelis, G., Hassellöv, M. (2014) Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation. Journal Of Analytical Atomic Spectrometry, 29 (4), 743-752. doi: 10.1039/c3ja50367d

PDF icon Cornelis, G. & Hassellöv, M.A. (2014). A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS.Accepted for publication in the Journal of Analytical Atomic Spectrometry, 29, 134-144. DOI: 10.1039/C3JA50160D.

PDF icon Tuoriniemi, J., Cornelis, G., Hassellov, M.(2014) Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Analytical Chemistry, 84, 3965−3972

PDF icon Gallego-urrea, J., Cornelis, G., Hammes, J., Hassellöv, M (2014). Multimethod 3D characterization of natural plate-like nanoparticles: shape effects on equivalent size measurements. J. Nanoparticle Res. 16, 2383

PDF icon Hammes, J., Gallego-Urrea, J.A., & Hassellöv, M. (2013). Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. Water Research, 47, 5350-5361. doi:http://dx.doi.org/10.1016/j.watres.2013.06.015

Component 2 - ENP Ecotoxicology, Bioavailability & Toxicokinetics

Ribeiro F., Gallego-Urrea J.A., Goodhead R.M., Van Gestel C.A.M., Moger J., Soares A.M.V.M., Loureiro S.(in press) Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution. Nanotoxicology

Lahive, E., Jurkschat, K., Shaw, B.J., Handy, R.D., Spurgeon, D.J., Svendsen, C. (2014) Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environmental Chemistry, 11 (3), 268-278

PDF icon Lopes. S., Ribeiro, F., Wojnarowicz, J., Lojkowski, W., Jurkschat, K., Crossley, A., Soares, A.M.V.M. & Loureiro, S. (2014). Zinc oxide nanoparticles toxicity to Daphnia magna: size dependence effects and dissolution. Environmental Toxicity & Chemistry, 30, DOI: 10.1002/etc24123.

PDF icon Matzke, M., Jurkschat, K., & Backhaus, T. (2014). Toxicity of differently sized and coated silver nanoparticles to the bacterium Pseudomonas putida: risks for the aquatic environment? Ecotoxicology. doi:10.1007/s10646-014-1222-x  

Polak, N.Read, D.S., Jurkschat, K., Matzke, M., Kelly, F.J., Spurgeon, D.J., Stürzenbaum, S.R.(2014). Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comparative Biochemistry and Physiology, Part C 160, 75–85

PDF icon Ribeiro, F., Gallego-Urrea, J.A., Jurkschat, K., Crossley, A., Hassellöv, M., Taylor, C., Soares A.M.V.M. & Loureiro, S. (2014). Silver nanoparticles and silver nitrate induce high toxicity to Pseudo kirchneriella, Daphnia magna and Danio rerio. Science of the Total Environment, 466 - 467.

Waalewijn-Kool, P.L., Rupp, S., Lofts, S., Svendsen, C., van Gestel, C.A.M.(2014) Effect of soil properties on the toxicity of ZnO nanoparticles to Folsomia candida in a comparison of four natural soils. Ecotoxicology and environmental safety , 108, 9-15.

PDF icon Waalewijn-Kool  P.L., Klein, K., Mallenco Forniés, R.,  Van  Gestel C.A.M. (2014) Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil organism Folsomia candida. Ecotoxicology 23, 1629–1637

PDF icon Heggelund, L.R., Diez Ortiz, M., Lofts, S., Lahive, E., Jurkschat, K., Wojnarowswicz, J., Cedergreen, N., Spurgeon, D. & Svendsen, C. (2013). Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology, Nanotoxicology, 8, 559-572.

PDF icon Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Soares, A.M.V.M. & Loureiro, S. (2013). Influence of soil pH on the toxicity of Zinc Oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus. Environmental Toxicology and Chemistry.

PDF icon Tyne, W., Lofts, S., Spurgeon, D.J., Jurkschat, K. & Svendsen, C. (2013). A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. Environmental Toxicology and Chemistry, 32, 1711-1717.

PDF icon Waalewijn-Kool, P.L., Diez Ortiz, M., Lofts, S. & van Gestel, C.A.M. (2013). The effect of pH on the toxicity of Zinc Oxide nanoparticles toFolsomia candida in amended field soil. Environmental Toxicology and Chemistry,  32, 2349-2355.

PDF icon Waalewijn-Kool. P.L., Diez Ortiz, M., van Straalen, N.M. & van Gestel, C.A.M. (2013). Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environmental Pollution , 178, 59-64.

PDF icon Tourinho, P.S., van Gestel, C.A.M., Lofts, S., Svendsen, C., Soares, A.M.V.M. & Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behaviour, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 31, 1679-1692.

Tsyusko, O.V., Unrine, J.M., Spurgeon, D., Starnes, D., Tseng, M. Joice, G., Bertsch, P. (2012). Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles.Environmental Science and Technology, 46, 4115-4124.

PDF icon Waalewijn-Kool, P.L., Diez Ortiz, M. & van Gestel, C.A.M. (2012). Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology, 21, 1797-1804.

PDF icon Hooper, H.L., Jurkschat, K., Morgan, A.J., Bailey, J., Lawlor, A.J., Spurgeon, D.J. & Svendsen, C. (2011). Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International, 37, 1111-1117.

Khorram, M.S. (2011). Zinc Toxicity on Aquatic Microbial Community: Zinc Oxide Nanoparticles and Ionic Zinc, Single Species and Community-level Toxicity Tests. Lambert Academic Publishing. ISBN 978-3-8473-1787-6, pp. 72.

Kool  P.L.,  Diez  Ortiz,  M.,  van  Gestel, C.A.M. (2011). Chronic  toxicity  of  ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution, 159, 2713-2719

PDF icon Van Gestel, C.A.M. & Kool, P.L. (2010). Metal-based nanoparticles in soil: New research themes should not ignore old rules and theories. Comments on the paper by Hu et al. (2010) ‘Toxological effects of TiO¬2 and ZnO nanoparticles in soil on earthworms Eisenia fetida.’Soil Biology & Biochemistry, 42, 586-591.

Component 3 - Risk Assessment & Communication

PDF icon NF27_Dumont_et_al_in_press_SUMMARY.pdfPDF icon Dumont et al. (accepted). Nano silver and nano zinc-oxide in surface waters - Exposure estimation for Europe at high spatial and temporal resolution. Environmental Pollution.  

PDF icon NF_26_Collin_et_al_in_press_SUMMARY.pdfPDF icon Collin et al. (in press). Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environmental Science Nano, DOI:10.1039/c4en00149

PDF icon Johnson, A.C. & Park, B. (2012). Predicting contamination by the fuel additive Cerium Oxide engineered nanoparticles within the United Kingdom and the associated risks. Environmental Toxicology and Chemistry, 31, 2582-2587.